Book HomeCascading Style Sheets: The Definitive GuideSearch this book Sunday 04th of December 2016 04:51:20 AM

9.4. Fixed Positioning

As implied in the previous section, fixed positioning is just like absolute positioning, except the containing block of a fixed element is always the viewport. In this case, the element is totally removed from the document's flow and does not have a position relative

App server developers are not restricted to using HTTP, they can transmit and recieve XML information using simple remote CORBA objects and RMI objects. The key is that by using XML, it makes these remote services or objects easier to build. And, by sticking with XML, any one of these technologies can be used in your design of your app server. You can use whatever technology is most appropriate to getting the job done, knowing that all the information flows as XML and can be processed by any part of the system. The reason Java object serialization did not achieve this is because it encodes object data to a binary format that is dependent on too many things (like the JVM version, and the existence of classes when things are deserialized, etc). XML is not limited by any of these restrictions (or problems), which makes it much easier to create systems that allow XML information to flow between different subsystems. Also by relying only on the data, large portions of the system can be replaced with better or different implementations for future-readiness.

App servers traditionally give their client apps access to information in remote databases, remote file systems, remote object repositories, remote web resources, and even other app servers. All these information sources don't even need to reside on the machine that hosts the app server. These remote resources may be on other machines on the Intranet or the Internet. Using Java and XML, RMI, JDBC, CORBA, JNDI, Servlet and Swing, you can create app servers that can integrate all kinds of remote and local information resources, and client apps that allow you to remotely or locally access this information from the app server.

In the future, with publicly available DTDs that are standardized for each vertical industry, XML based app servers will become very popular. Also when XML schema repositories become available and widely used, app servers will be able to take on a new role and provide application services that are not offered now. Companies will need to share information with other companies in related fields, and each company might have a different software system in which all their data is housed. By agreeing upon a set of DTDs or schemas (encoded in XML), these companies can exchange information with each other regardless of what systems they are using to store this information. If their app servers can exchange XML documents (based on some shared DTD or schema), then these disparate app servers can understand each other and share information. One of the uses for XML foreseen by the W3C is just this, vertical industries (like insurance and health care) creating sets of DTDs and schemas that all companies in the industry agree upon. Then these companies' app servers can talk to each other using some popular protocol (like HTTP or CORBA/IIOP) to exchange information between each other. This has the potential to save a lot of time and money in the daily business operations of these companies.

to any part of the document.

This can be exploited in a number of interesting ways. First off, it's possible to create frame-style interfaces using fixed positioning. Consider Figure 9-24, which shows a very common layout scheme.

Figure 9-24

Figure 9-24. Emulating frames with fixed positioning

This could be done using the following styles:

DIV#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;
background: gray;}
DIV#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;
background: silver;}

This will fix the header and sidebar to the top and side of the viewport, where they will remain regardless of how the document is scrolled. The drawback here, though, is that the rest of the document will be overlapped by the fixed elements. Therefore, the rest of the content should probably be contained in its own DIV and employ the following:

DIV#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;
overflow: scroll; background: white;}

It would even be possible to create small gaps between the three positioned DIVs by adding some appropriate margins, demonstrated in Figure 9-25:

BODY {background: black; color: silver;}  /* colors for safety's sake */
DIV#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;
background: gray; margin-bottom: 2px; color: yellow;}
DIV#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;
background: silver; margin-right: 2px; color: maroon;}
DIV#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;
overflow: scroll; background: white; color: black;}
Figure 9-25

Figure 9-25. Separating the "frames"

Given such a case, a tiled image could be applied to the BODY background. This image would show through the gaps created by the margins, which could certainly be widened if the author saw fit. For that matter, if a background image was of little importance, simple borders could be applied to the DIVs instead of margins.



Library Navigation Links

Copyright © 2002 O'Reilly & Associates. All rights reserved.

paragraph in the preceding example would be green, not black -- but the first paragraph would still be gray.

You need not restrict yourself to such simple operations, of course. There are plenty of ways to use color. You might have some paragraphs that contain text warning the user of a potential problem. In order to make this text stand out more than usual, you might decide to color it red. All that's needed is a class of warn on each paragraph that contains warning text