Book HomeCascading Style Sheets: The Definitive GuideSearch this book Monday 02nd of March 2015 05:57:03 AM

2.7. Specificity

Given the existence of inheritance, one might well wonder what happens in a circumstance such as this:

.grape {color: purple;}
H1 {color: red;}
<H1 CLASS="grape">Meerkat <EM>Central</EM></H1>

Since the selectors H1 and .grape can both match the H1 element shown, which one wins? As it happens, .grape is the correct answer, and so the H1 element will be colored purple. This happens because of the specificity of the two rules, and the rules CSS has to deal with such situations.

Specificity describes the relative weights of various rules. According to the specification, a simple selector (e.g., H1) has a specificity of 1, class selectors have a specificity of 10, and ID selectors a specificity of 100. Thus the following rules would have the noted specificity:

H1 {color: red;}                    /* specificity = 1 */
P EM {color: purple;}               /* specificity = 2 */
.grape {color: purple;}             /* specificity = 10 */
P.bright {color: yellow;}           /* specificity = 11 */
P.bright EM.dark {color: brown;}    /* specificity = 22 */
#id216 {color: blue;}               /* specificity = 100 */

Thus, the rule for #id216 has a much higher specificity, and therefore more weight, than any of the others listed. In cases where more than one rule can apply to an element, the styles with the higher weight win out.

2.7.1. Inheritance and Specificity

Within the framework of specificity, inherited values have, effectively, a specificity of 0. This means that any explicitly declared rule will override an inherited style. Therefore, no matter how much weight a rule might have, it is only inherited if no other rule can be applied to the inheriting element.

For example, consider the following:

BODY {background: black;}
LI {color: gray;}
UL.vital {color: white;}

You would likely expect that all list items would be gray except for those which are found in lists with a class of vital, in which case they'll be white. However, as Figure 2-26 demonstrates, this is not the case.

Figure 2-26

Figure 2-26. Apparently incorrect behavior

Why does this happen? Because the explicit declaration with the selector LI wins out over the value which might have been inherited from the UL.vital rule.

Let's look at this process in a little more detail. Given the following markup, the emphasized text will be gray, not black, since the rule for EM outweighs the value inherited from the H1:

H1#id3 {color: black;}   /* specificity = 101 */
EM {color: gray;}        /* specificity = 1 */
<H1 ID="id3">Meerkat <EM>Central</EM></H1>

This is because the specificity of the second rule (1) is higher than the specificity of the inherited value (0). The fact that the original specificity of the H1#id3 rule is 101 has no effect on the inherited value, whose weight is still 0.

If the intention is to have H1s be consistently black, while EM text in all other circumstances should be red, then the following would be a good solution:

H1, H1 EM {color: black;}   /* specificity = 1, 2 */
EM {color: red;}            /* specificity = 1 */

Given these rules, EM text in any circumstance except within an H1 will be red. However, EM text inside H1 elements will be black, because the specificity of their selector (2) is greater than that of the second rule (1). Note that since, due to selector grouping, there are effectively two rules in the first statement (one for H1 and one for H1 EM ), there are also two specificities -- one for each rule.

Elements with a STYLE attribute are defined under CSS1 to have a specificity of 100, just as though they were ID selectors such as #id3. In practice, however, this specificity value is somewhat higher, since the value of a STYLE element seems to outweigh most normal rules, even those which technically have a higher specificity (such as H1#id3 EM ). In other words, the following markup will generally have the result shown in Figure 2-27:

H1#id3 EM {color: gray;}
<H1 ID="id3">Meerkat <EM STYLE="color: black;">Central</EM>!</H1>
Figure 2-27

Figure 2-27. Inline styles have high specificity

style is set, then the value of border-widthdefaults to medium , not zero. The exact width ofmedium will depend on the user agent'sprogramming, but a common value is 2
or 3 pixels.

8.2.2. Horizontal Formatting

In contrast

You might choose to treat STYLE value as having a specificity value of, say, 1,000, although this interpretation is not supported by the CSS specification and so cannot be relied upon. Finally, pseudo-elements are ignored altogether when calculating specificity, but pseudo-classes are treated like regular classes.

There is one other wrinkle in the specificity picture, which is a way to pretty much override the entire specificity mechanism.

2.7.2. Importance

Ever felt like something is so important that it outweighs all other considerations? Well, it's possible to mark certain rules as being more important than others. These are called important rules due to the way in which they are declared and also because of their very nature. An important rule is marked by inserting the phrase !important just before the terminating semicolon in a rule:

P.dark {color: #333 !important; background: white;}

Here, the color value of #333 is marked !important, whereas the background value of white is not. If you wish to mark both rules as important, then each rule will need its own !important:

P.dark {color: #333 !important; background: white !important;}

It is important to ensure that you place the !important correctly, or else the rule can be invalidated. The !important always goes at the end of the declaration, right before the semicolon. This is especially important -- no pun intended -- when it comes to properties that allow values which contain multiple keywords, such as font:

P.light {color: yellow; font: 11pt Times !important;}

If the !important were placed anywhere else in the font declaration, then that entire declaration would very likely be invalidated and none of the styles applied.

Rules that are marked !important do not have a defined specificity value, but authors can assume that they have a conveniently high value, such as 10,000 -- in other words, a value that outweighs all others. Note that while author-defined styles are treated as having a greater weight than reader-defined styles (see Section 2.8, "The Cascade", later in this chapter), the reverse is true of !important rules: important reader-defined rules take precedence over author-defined styles, even those marked !important.

Indeed, an !important rule will override the contents of an inline STYLE attribute. Thus, given the following code, the result will be gray text, not black:

H1 {color: gray !important;}
<H1 STYLE="color: black;">Hi there!</H1>

There is one last scenario to consider. Consider the following:

P#warn {color: red ! important;}
EM {color: black;}
<P ID="warn">This text is red, but <EM>emphasized text is black.</EM></P>

Remember that inherited values always have a specificity of 0. This is true even if the rule from which the value comes has an !important attached. All of its importance is lost outside the elements which match that rule.

WARNING

As of this writing, very few browsers implement !important. Internet Explorer 5 and Opera 3.6 have it right, but that's all. On the other hand, !important is expected to be supported in Navigator 6.



Library Navigation Links

Copyright © 2002 O'Reilly & Associates. All rights reserved.

Use DOM to directly manipulate the information stored in the document (which DOM turns into a tree of nodes). This document object is created by the DOM XML parser after it reads in the XML document. This option leads to messy and hard-to-understand code. Also, this works better for document-type data rather than just computer generated data (like data structures and objects used in your code).
  • Create your own Java object model that imports information from the XML document by using either SAX or DOM. This kind of object model only uses SAX or DOM to initialize itself with the information contained in the XML document(s). Once the parsing and initialization of your object model is completed, DOM or SAX isn't used anymore. You can use your own object model to accessed or modify your information without using SAX or DOM anymore. So you manipulate your information using your own objects, and rely on the SAX or DOM APIs to import the information from your ApplicationML file into memory (as a bunch of Java objects). You can think of this object model as an in-memory instance of the information that came was "serialized" in your XML document(s). Changes made to this object model are made persistent automatically, you have to deal with persistence issues (ie, write code to save your object model to a persistence layer as XML).
  • Create your own Java object model (adapter) that uses DOM to manipulate the information in your document object tree (that is created by the parser). This is slightly different from the 2nd option, because you are still using the DOM API to manipulate the document information as a tree of nodes, but you are just wrapping an application specific API around the DOM objects, so its easier for you to write the code. So your object model is an adapter on top of DOM (ie, it uses the adapter pattern). This application specific API uses DOM and actually accesses or modifies information by going to the tree of nodes. Changes made to the object model still have to be made persistence (if you want to save any changes). You are in essence creating a thin layer on top of the tree of nodes that the parser creates, where the tree of nodes is accessed or modified eventually depending on what methods you invoke on your object model.
  • Depending on which of the three options you use to access information using your Java classes, this information must at some point be saved back to a file (probably to the one from which it was read). When the user of your application invokes a File->Save action, the information in the application must be written out to an ApplicationML file. Now this information is stored in memory, either as a (DOM) tree of nodes, or in your own proprietary object model. Also note that most DOM XML parsers can generate XML code from DOM document objects (but its quite trivial to turn a tree of nodes into XML by writing the code to do it yourself). There are 2 basic ways to get this information back into an ApplicationML file: